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Overview of this talk

* The problem: modelling analog dynamics of digital components

- Motivation: relevance for 32nm and below CMOS
- Modelling goals: accuracy, simulation efficiency, formal verifiability

* ABCD-D in the context of existing techniques
- SPICE, table-based library characterisation, ECSM/CCS, etc.
* DAE2FSM, ABCD, ABCD-L and ABCD-D
- basket of tools to capture analog dynamics using Boolean models
* ABCD-D: the core technique, illustrated with an example
* ABCD-D: preliminary results, composability

* Summary, conclusions, and future work
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Digital Components, Analog Dynamics

CMOS inverter: Analog dynamics

Problem known for a while
Today's analog effects different

- e.g., GIDL/GISL
- short-channel effects
- tunnelling

* New reasons for departure from
purely digital behaviour

- new models (e.g., BSIM4) 0

= Input u(t) = Output ¥(t)
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Drivers for increased accuracy e (ps}

— aggressive performance targets (multi Gb/s throughput)
- increasingly non-ideal devices at 22nm and below

* many more parasitic factors, high parameter variability
Drivers for increased simulation, formal verification efficiency
- much bigger systems
- much more complicated dynamics
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ABCD-D vs Existing approaches

SPICE

Truth tables

Table-based
Cell Libraries

ECSM/CCS

Accuracy

Simulation
Efficiency

ABCD-D

Formal
Verification

Purely Boolean Model (FSM)
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ABCD-D: Boolean but Accurate

Analog dynamics
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ABCD-D model

Key ideas: FSM symbols are time-sampled analog values
Multi-level discretization boosts accuracy
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DAE2FSM, ABCD, ABCD-L, ABCD-D

* Suite of modelling techniques for Analog — Boolean
- Motivation: fast simulation + formal analysis/verification
* DAE2FSM: first technique that was developed (Chenjie Gu)
— works for small systems with “simple” analog dynamics
- not very scalable (limitations of Angluin)
* discretization has to be coarse (both time and signal)
* ABCD: Accurate Booleanization of Continuous Dynamics
— umbrella of techniques: more scalable than DAE2FSM
- support for systems with much richer dynamics

* pure digital, pure analog, mixed-signal applications
- e.g., ABCD-L for LTI systems

- e.g., ABCD-D for analog dynamics of digital components, etc.
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ABCD-D: The Core Technique

* Recap: What is an FSM?

Example: This FSM outputs a
“1” if and only if the previous
two inputs are “1”

* System with finite set of states, finite /O alphabet
- Well-defined initial state

* Transition rules of the form
- (current state, input) — (next state, output)
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ABCD-D: DC, TRAN states in FSM

. Con.sider digital c.omp.onent D (say 1i/p, 1 o/p) U(t)l D Y(t)l
- signals discretized into M levels by ABCD-D
— each of the M DC inputs corresponds to a DC state in the FSM

* Eg: 4 DC inputs {u0, u1, u2, u3} — 4 DC states {dcO, dc1, dc2, dc3}
- if input settles to u2, FSM state will settle to dc2, and so on

* Transient inputs: step from u0 to u3?
- Cannot change from dcO to dc3 instantly
- Introduce TRAN states between (dcO, dc3)
- and between every pair of DC states
* How many TRAN states?
- based on time taken for dcO — dc3
* Plus, tag DC, TRAN states with outputs

* Result: ABCD-D FSM

© = TRAN state (more general model than what was presented in paper)
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Example: CMOS inverter
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Crossover times: rising input, falling output
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Q: What about multi-input gates,
sequential logic?

A: Can be done; straightforward, but unable to
discuss due to time constraints
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Composability of ABCD-D models

Output of one FSM can be fed as input to another
Predict o/p of large circuits by composing FSMs together

Model
compactness FSM construction
Design ZI efficiency

modularity y.

Composability

/ Simulation

| Su_pports_ u JL efficiency
iterative design V

FSM reusability
across designs
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Composability: Chain of inverters
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Multi-input Composability: Full Adder (1/2)
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Multi-input Composability: Full Adder (2/2)
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Summary and conclusions

* ABCD-D: technique to model analog dynamics in digital
components, using purely Boolean models (FSMs)

* Key idea: Multi-level discretization of ckt. signals
- enables near-SPICE accuracy

* FSM construction involving DC, TRAN states

* Key property of ABCD-D models: Composability

* ABCD-D enables fast simulation, formal verification
- even in the presence of analog effects

Future work

* Larger examples (e.g, 64-bit adder)
* Logic synthesis and formal verification (w/ ABC)
* ABCD-D + ABCD-L, for interconnect analysis
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Questions?
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