ABCD-D

Modelling the Analog Dynamics of Digital Components using Finite State Machines

Aadithya V. Karthik Jaijeet Roychowdhury

The University of California, Berkeley

Mar 2013, TAU, Lake Tahoe

Aadithya V. Karthik (aadithya@berkeley.edu)

Overview of this talk

- The problem: modelling analog dynamics of digital components
 - Motivation: relevance for 32nm and below CMOS
 - Modelling goals: accuracy, simulation efficiency, formal verifiability
- ABCD-D in the context of existing techniques

 SPICE, table-based library characterisation, ECSM/CCS, etc.
- DAE2FSM, ABCD, ABCD-L and ABCD-D
 - basket of tools to capture analog dynamics using Boolean models
- ABCD-D: the core technique, illustrated with an example
- ABCD-D: preliminary results, composability
- Summary, conclusions, and future work

Digital Components, Analog Dynamics

Problem known for a while
 Today's analog effects different

 e.g., GIDL/GISL
 short-channel effects
 tunnelling

 New reasons for departure from purely digital behaviour

 new models (e.g., BSIM4)

50

- Drivers for increased accuracy
 - aggressive performance targets (multi Gb/s throughput)
 - increasingly non-ideal devices at 22nm and below
 - many more parasitic factors, high parameter variability
- Drivers for increased simulation, formal verification efficiency
 - much bigger systems
 - much more complicated dynamics

Aadithya V. Karthik (aadithya@berkeley.edu)

100

150

time (ps)

200

ABCD-D vs Existing approaches

	Accuracy	Simulation Efficiency	Formal Verification
SPICE			
Truth tables			
Table-based Cell Libraries			
ECSM/CCS			
ABCD-D	Purely Boolean Model (FSM)		

ABCD-D: Boolean but Accurate

ABCD-D model

Key ideas: FSM symbols are time-sampled analog values Multi-level discretization boosts accuracy

Aadithya V. Karthik (aadithya@berkeley.edu)

DAE2FSM, ABCD, ABCD-L, ABCD-D

- Suite of modelling techniques for Analog \rightarrow Boolean
 - Motivation: fast simulation + formal analysis/verification
- DAE2FSM: first technique that was developed (Chenjie Gu)
 - works for small systems with "simple" analog dynamics
 - not very scalable (limitations of Angluin)
 - discretization has to be coarse (both time and signal)
- ABCD: <u>Accurate</u> <u>B</u>ooleanization of <u>C</u>ontinuous <u>Dynamics</u>
 - umbrella of techniques: more scalable than DAE2FSM
 - support for systems with much richer dynamics
 - pure digital, pure analog, mixed-signal applications
 - e.g., ABCD-L for LTI systems
 - e.g., ABCD-D for analog dynamics of digital components, etc.

ABCD-D: The Core Technique

• Recap: What is an FSM?

- System with finite set of states, finite I/O alphabet
 - Well-defined initial state
- Transition rules of the form
 - (current state, input) \rightarrow (next state, output)

Aadithya V. Karthik (aadithya@berkeley.edu)

ABCD-D: DC, TRAN states in FSM

- Consider digital component D (say 1 i/p, 1 o/p)
 - signals discretized into M levels by ABCD-D
 - each of the M DC inputs corresponds to a DC state in the FSM
- Eg: 4 DC inputs {u0, u1, u2, u3} \rightarrow 4 DC states {dc0, dc1, dc2, dc3}
 - if input settles to u2, FSM state will settle to dc2, and so on

- Transient inputs: step from u0 to u3?
 - Cannot change from dc0 to dc3 instantly
 - Introduce TRAN states between (dc0, dc3)
 - and between every pair of DC states
 - How many TRAN states?
 - based on time taken for $dc0 \rightarrow dc3$
 - Plus, tag DC, TRAN states with outputs
 - Result: ABCD-D FSM

(more general model than what was presented in paper)

Aadithya V. Karthik (aadithya@berkeley.edu)

Example: CMOS inverter

Aadithya V. Karthik (aadithya@berkeley.edu)

Q: What about multi-input gates, sequential logic?

A: Can be done; straightforward, but unable to discuss due to time constraints

Composability of ABCD-D models

Output of one FSM can be fed as input to another Predict o/p of large circuits by composing FSMs together

Composability: Chain of inverters

Multi-input Composability: Full Adder (1/2)

Multi-input Composability: Full Adder (2/2)

Summary and conclusions

- ABCD-D: technique to model analog dynamics in digital components, using purely Boolean models (FSMs)
- Key idea: Multi-level discretization of ckt. signals
 - enables near-SPICE accuracy
- FSM construction involving DC, TRAN states
- Key property of ABCD-D models: Composability
- ABCD-D enables fast simulation, formal verification
 - even in the presence of analog effects

Future work

- Larger examples (e.g, 64-bit adder)
- Logic synthesis and formal verification (w/ ABC)
- ABCD-D + ABCD-L, for interconnect analysis

Questions?