Std cell library: a key TTM enabler

KS Ramesh
Intel Corporation
Designing with leading edge process tech at Intel

• Have unbridled access to the latest process technology
• Can tailor your design to process and vice versa, since you control both!

• Does this make life easier or harder for design teams?
 – Product design runs in parallel with Process development
 – We do not always have a stable and mature process to start with compared to most others
 – Product and process targets change mid-course while lifecycle and TTM are shrinking for the industry at large

• How can library help deliver good yielding Si products taking advantage of and maintaining our process lead?
STD CELL LIB requirements

• Both high perf CPU and SoC designs include IP’s operating at:
 – Multiple fixed V power planes
 – Dynamic range of V (core turbo)
 – Wide range of temperature
 – Different corners on the same process node

• IP’s need verification across all targeted segments/corners and PVT
 – Often, these change mid-course during project execution
 – People at and outside Intel have used MCMM for this

• As a customer, ask is always the same:
 – Ability to (re)generate accurate library collateral in the shortest possible time!
 – It takes too long! (10K cells, 4 PVT, 4 wks)
Library development

- **Content:** standard cells for digital, analog, cache
 - jointly developed by Design Technology and FAB Adv Design teams
 - optimized specifically for Intel manufacturing processes to extract max performance and yield.

- **Engine:** A full-featured internal library characterization tool which generates timing, power and RV model files.
 - Generates tool views for Synopsys' Design Compiler, Intel STA tool, Primetime, Cadence, Mentor Graphics' ATPG, SALT, Caliber, FEV/Conformal, Verilog simulators, etc.
Why does it take so long?

- Extraction, Initialization, cell simulation, model generation, validation and regression.
- Init/Sim are accuracy-runtime decisions
 - WC (dynamic vector initialization) vs static user defined
 - i/p waveform (pwl @intel vs continuous) – impacts specific topologies like pg/dcn
 - Container/zone model for wc extraction
 - #Points in 2D matrix (slope, Cmax)
 - MIS for max/min
 - Separate model for setup/hold
- Breadth of tool views needed -> validation time
- Repeat all of the above for each PVT corner :
 - V and T flip many init vectors
Statistical modelling

We do statistical modelling of variation effects.

- **Advanced On-Chip Variation Modeling**
 - For SOC and PT-based HIPs
 - 2-D Tables for delay de-rate factor for setup and hold as function of
 `#of stages` and `spatial separation`
 - Stage-count for std. cell and device level info is included as part of
 the collaterals
 - Could be MonteCarlo or Nova/MPP based algorithm
 - Users: PT and ICC

- **Le/Vt adjustments** to std cell devices based on statistical failure models
 - Used for our custom designs with internal STA tool
 - Can be different for setup/hold
 - Can be edge and device specific
Design and Si

- PV Model has not been a good indicator of silicon speed paths.
- Majority of speed paths do not come from the PV model convergence tail.
- Just pushing the PV convergence target alone is not a sound way to maximize silicon frequency.
- There is an *uncertainty window* around which most silicon speed paths are found.
- Goal is to augment PV model with silicon learnings and carry knowledge forward to future projects.
Sources of PV-Si miscorrelation?

- Transistor size (z) related Si miscorrelation
- Transistor layout topology induced differences in finfet performance
- Dynamic V droop
- Sensitive Cell topologies (gate i/p vs diff i/p)
- Cell loading (lumped vs distributed(pi))
- RC dominated vs device dominated load
- Changes in pn skew pre to post Si
- Aging
- Cmax – variation limits Vmin
Work around or make it faster?

• Workarounds used (runtime-accuracy tradeoff?)
 – Simulation step size
 – Apply generic vs cell specific Guardbands
 – Use RC scalars to cover for device ‘V’ scaling
 – Use MIS where needed – high vs low freq/perf
 – Bypass power modelling?
 – Flat scaling the timing models

But:

• Can we come up with a RSM that takes V and T as parameters to cut setup/simulation time?
• Would really like a smart algorithm for input vector initialization across PVT.
• Abstracting more parameters into STA (AOCVM)?
• Consistent language between lib, STA, and Spice!